• Influx Technology


NB-IoT, or Narrow Band-Internet of things, is a communication standard designed to let the IoT devices operate via a carrier network. In general terms, it refers to the interconnection amongst various devices or sensors that use the GSM spectrum to exchange data. NB-IoT is an LPWAN (Low power wide area network) technology that does not require ‘gateways’. The sensors can directly communicate with the carrier. Before getting into the details of how and what of Nb-IoT, let’s understand IoT and LPWAN.

Internet of Things (IoT): - can be defined as the network of devices. They may or may not be connected via the internet, but they can analyse, compute, and transfer data over the network without any active human or computer interaction.

LPWAN, or Low Power Wide Area Network, connects devices over large areas and offers communication characteristics such as long-range communication at a lower bit rate, low cost and greater power efficiency (low power). LPWAN supports many devices over a wide area compared to cellular services and thus has gained popularity in almost every field. LPWAN is incredibly suitable for IoT applications where one needs to transmit a limited/small amount of data.

There are LPWAN technologies developed mainly by cellular operators under the auspices of the GSM Association and within the 3GPP consortium. Such LPWAN technologies are NB-IoT, LoRa-Alliance, Sigfox, where NB-IoT belongs to the licensed frequency band, and the rest use unlicensed frequency bandwidth.

Sigfox was developed in 2010 by the start-up Sigfox (in Toulouse, France). It is both a company and an LPWAN network operator.

LoRa, first developed by the start-up Cycleo in 2009 (in Grenoble, France). Purchased by Semtech (USA) in 2015 and standardised by LoRa-Alliance.

Narrow Band-Internet of Things: is a radio technology standard to enable a wide range of cellular devices and services developed by the 3rd Generation Partnership Project (3GPP). This technology co-exists with the Global System For Mobile Communications (GSM) and Long-Term Evolution (LTE) under licensed frequency bands (e.g., 700 MHz, 800 MHz, and 900 MHz). But NB-IoT limits the bandwidth to a single narrow band of 180kHz and the bit rate to 150-250kbps.

Why narrow-band?

  • Require less operating power.

  • Ideal for shorter-range/fixed location wireless application over shorter distances.

  • Lower probability of overlap with any interfering signals.

​ NB-IoT supports a huge number of devices, especially constrained devices that face serious limitations such as battery life, network coverage, processors and many more. But do not have a huge demand for bandwidth or can suffice with low latency. As this utilises the existing mobile network and covers all the bands of GSM, any area with the mobile network can have NB-IoT, like unconnected machines, industrial IoT machinery, sensors etc. It is also ideal for systems with high device density like deep indoors, underground, parking lots etc. With NB-IoT, the following operation modes are possible, as shown in